Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6634, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789722

RESUMO

Seasonal shifts in phytoplankton accumulation and loss largely follow changes in mixed layer depth, but the impact of mixed layer depth on cell physiology remains unexplored. Here, we investigate the physiological state of phytoplankton populations associated with distinct bloom phases and mixing regimes in the North Atlantic. Stratification and deep mixing alter community physiology and viral production, effectively shaping accumulation rates. Communities in relatively deep, early-spring mixed layers are characterized by low levels of stress and high accumulation rates, while those in the recently shallowed mixed layers in late-spring have high levels of oxidative stress. Prolonged stratification into early autumn manifests in negative accumulation rates, along with pronounced signatures of compromised membranes, death-related protease activity, virus production, nutrient drawdown, and lipid markers indicative of nutrient stress. Positive accumulation renews during mixed layer deepening with transition into winter, concomitant with enhanced nutrient supply and lessened viral pressure.


Assuntos
Fitoplâncton/fisiologia , Fitoplâncton/virologia , Água do Mar/microbiologia , Oceano Atlântico , Biomassa , Eutrofização , Estações do Ano , Água do Mar/química , Estresse Fisiológico , Fenômenos Fisiológicos Virais
2.
ISME J ; 13(2): 537-546, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30301945

RESUMO

Microorganisms encounter a diversity of chemical stimuli that trigger individual responses and influence population dynamics. However, microbial behavior under the influence of different incentives and microbial decision-making is poorly understood. Benthic marine diatoms that react to sexual attractants as well as to nutrient gradients face such multiple constraints. Here, we document and model behavioral complexity and context-sensitive responses of these motile unicellular algae to sex pheromones and the nutrient silicate. Throughout the life cycle of the model diatom Seminavis robusta nutrient-starved cells localize sources of silicate by combined chemokinetic and chemotactic motility. However, with an increasing need for sex to restore the initial cell size, a change in behavior favoring the attraction-pheromone-guided search for a mating partner takes place. When sex becomes inevitable to prevent cell death, safeguard mechanisms are abandoned, and cells prioritize the search for mating partners. Such selection processes help to explain biofilm organization and to understand species interactions in complex communities.


Assuntos
Quimiotaxia , Diatomáceas/fisiologia , Modelos Biológicos , Biofilmes
3.
Microb Ecol ; 72(2): 287-94, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27260155

RESUMO

Diatoms are species-rich microalgae that often have a unique life cycle with vegetative cell size reduction followed by size restoration through sexual reproduction of two mating types (MT(+) and MT(-)). In the marine benthic diatom Seminavis robusta, mate-finding is mediated by an L-proline-derived diketopiperazine, a pheromone produced by the attracting mating type (MT(-)). Here, we investigate the movement patterns of cells of the opposite mating type (MT(+)) exposed to a pheromone gradient, using video monitoring and statistical modeling. We report that cells of the migrating mating type (MT(+)) respond to pheromone gradients by simultaneous chemotaxis and chemokinesis. Changes in movement behavior enable MT(+) cells to locate the direction of the pheromone source and to maximize their encounter rate towards it.


Assuntos
Quimiotaxia , Diatomáceas/fisiologia , Feromônios/química , Dicetopiperazinas/química , Modelos Biológicos , Reprodução
4.
Nat Commun ; 7: 10540, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26842428

RESUMO

Diatoms are highly abundant unicellular algae that often dominate pelagic as well as benthic primary production in the oceans and inland waters. Being strictly dependent on silica to build their biomineralized cell walls, marine diatoms precipitate 240 × 10(12) mol Si per year, which makes them the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under dSi-limited conditions in a chemokinetic response and, if gradients of this resource are present, increased directionality of cell movement promotes chemotaxis. The ability to exploit local and short-lived dSi hotspots using a specific search behaviour likely contributes to micro-scale patch dynamics in biofilm communities. On a global scale this behaviour might affect sediment-water dSi fluxes and biogeochemical cycling.

5.
Artigo em Inglês | MEDLINE | ID: mdl-24036426

RESUMO

Holothurians are sedentary marine organisms known to produce saponins (triterpene glycosides), secondary metabolites exhibiting a wide range of biological activities. In this paper, we investigated the saponin contents of semi-purified and membranolytic HPLC fractionated extracts from the body wall of three species of Holothuriidae as an attempt to examine its chemical diversity in relation to phylogenetic data. MALDI-FTICR MS and nano-HPLC-chip Q-TOF MS were used for mass profiling and isomer separation, respectively giving a unique chemical saponin fingerprint. Moreover, the methods used yield the highest number of congeners. However, saponin concentration, bioactivity and chemical diversity had no apparent relationship. MS fingerprint showed the presence of holothurinosides, which was observed for the first time in other Holothuria genera besides the basally positioned Holothuria forskali. This congener is proposed to be a primitive character that could be used for taxonomic purposes. The phylogenetic mapping also showed that the glycone part of the compound evolved from non-sulfated hexaosides to sulfated tetraosides, which have higher membranolytic activity and hydrophilicity, the two factors affecting the total ecological activity (i.e. chemical defense) of these compounds. This might be an adaptation to increase the fitness of the organism.


Assuntos
Filogenia , Saponinas/metabolismo , Pepinos-do-Mar/metabolismo , Animais , Membrana Celular/metabolismo , Espectrometria de Massas , Pepinos-do-Mar/citologia , Especificidade da Espécie , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...